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Abstract We study the convergence rate of the solutions of the incompressible Euler-c, an
inviscid second-grade complex fluid, equations to the corresponding solutions of the Euler
equations, as the regularization parameter o approaches zero. First we show the convergence
in H*, s > n/2+ 1, in the whole space, and that the smooth Euler-« solutions exist at least as
long as the corresponding solution of the Euler equations. Next we estimate the convergence
rate for two-dimensional vortex patch with smooth boundaries.

Keywords Inviscid regularization of Euler equations - Euler-« - Second-grade
non-Newtonian fluid - Vortex patch
1 Introduction

The equations of motion for a visco-elastic second-grade non-Newtonian complex fluid are
given by the system (see, e.g., [28, 29, 74])

3
& VAU (- V) vtV + Vp =0,

at
v=(1—a’A)u, (1.1)
V.u=0,
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v(x, 0) = v"(x),

where the fluid velocity field, v, and the pressure, p, are the unknowns; v'" is the given
initial velocity field, v is kinematic viscosity, o« > 0 is a material parameter which represents
the elastic response of the fluid, and we use Einstein’s summation convention.The inviscid
version of this model, i.e., when v = 0, is mathematically identical to the Euler-« (also
known as the Lagrangian-averaged Euler-o) model, which was independently introduced
and derived in the Euler-Poincaré variational framework in [37, 38]. In this variational theory
the parameter « is interpreted as a spatial filtering scale of the velocity field v.

In [16-18, 30, 31] the corresponding Navier-Stokes-a (NS-«) (also known as the viscous
Camassa-Holm equations or the Lagrangian-averaged Navier-Stokes-a (LANS-«)) model,
which is a regularization of the Navier-Stokes equations (NSE), was obtained by introduc-
ing an appropriate ad hoc viscous term into the Euler-o equations, that is, by adding the
viscous term —vAv, instead of —vAuwu in (1.1). While the question of global regularity of
three-dimensional (3D) viscoelastic model (1.1) is still a challenging open problem, the 3D
NS-«a model is proven to be globally well posed [31]. The extensive research of the o-
models (see, e.g., [2, 4, 5, 9, 12-14, 16-18, 20-23, 30-34, 39, 40, 44, 45, 50, 51, 53, 56,
63, 67, 76]) stems, on the one hand, from the close agreement of their steady state solutions
to averaged empirical data, for a large range of huge Reynolds numbers, for turbulent flows
in infinite channels and pipes [16—18]. On the other hand, the «-models, for small values
of the parameter «, can also be viewed as numerical regularizations of the original, Euler
or Navier-Stokes, systems. The main practical question arising is that of the applicability of
these regularizations to the correct predictions of the underlying flow phenomena. In partic-
ular, it becomes important to investigate the problem of convergence of the «-models, as the
regularization parameter o approaches zero. This problem has been studied in various con-
texts. In [31] the convergence, as o« — 0, of a subsequence of the weak solutions of the three
dimensional (3D) NS-« equations to a Leray-Hopf weak solution of the 3D NSE equations
is shown, for the case of periodic boundary conditions. Similar results are also reported in
[56] concerning the MHD-« model. In [21, 77] it is shown that the trajectory attractors of
the 3D Leray-o and NS-o models converge to the trajectory attractor of weak solutions of
the NSE as o — 0. The authors of [19] obtained a rate of convergence of the solutions of the
3D NS-«a equations with periodic boundary to the solutions of the Navier-Stokes equations,
as o — 0, for small initial data in Besov-type function spaces, for which global existence
and uniqueness of solutions can be established. Recently, the convergence rates of solutions
of various two-dimensional (2D) «-regularization models, subject to periodic boundary con-
ditions, toward solutions of the exact Navier-Stokes equations, as « — 0, have been studied
in [14]. For 2D Euler-« regularization the authors of [5] show the convergence of a subse-
quence of the weak solutions of the Euler-o equations with a distinguished sign vortex sheet
initial data (a Radon measure supported on a curve) to a solution of the 2D Euler equations,
as a — 0. We elaborated on this result below. It is worth mentioning that the problem of
weak convergence of solutions of the viscous second-grade equations (1.1) with L? initial
data to a solution of the Navier-Stokes equations, as a — 0, is treated in [42, 43]. There is
also a result comparing the vorticities of the Euler- o and the NSE equations for « = /v in
R? [64].

In this paper we follow the above mentioned philosophy proposed in [56] and consider
the Euler-o model as a numerical inviscid regularization of the Euler equations. We study the
convergence rate of the solutions of the 2D and 3D Euler-« equations to the corresponding
solutions of the Euler equations for smooth initial data in the whole space, as the regulariza-
tion parameter « approaches zero. In the 2D case we also investigate the convergence rate of
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the solutions of the Euler-« to the corresponding solutions of the Euler equations for vortex
patch initial data. This program is analogues to the established results concerning the rate of
convergence of the NSE to the Euler equations, as the viscosity v — 0, see [1, 27, 46, 61].
However, in the 2D case there is an advantage of the Euler-o regularization over the Navier-
Stokes equations regularization since the former regularizes the solution by transporting the
vorticity with a smooth vector field, and hence it preserves the structure of the vortex patch
and vortex sheet while regularizing the motion.
The incompressible Euler equations are given by

av
5+(U-V)U+Vp:0,

V.v=0, (1.2)
v(x,0) = v (x),

where v, the fluid velocity field, and p, the pressure, are the unknowns, and v™" is the given
initial velocity field. For results concerning the Euler equations, see [58, 59], and for recent
surveys, see [6, 26].

In R?, the vorticity formulation of Euler equations is obtained by taking a curl of (1.2)
and is given by

% 4 - v)g =0
% o wya—o
ot 9

v=K xgq, (1.3)
q(x,0)=¢g"(x),

where K (x) = #Vl log|x|, g = curl v is the vorticity, and g™ is the given initial vorticity.

Yudovich [80] obtained the existence and uniqueness of weak solutions of the 2D incom-
pressible Euler equations for initially bounded vorticity (see, also, [3, 49] for an alternative
proof, [75] for an improvement with vorticity in a class slightly larger than L°°, and [70]
for review of relevant two-dimensional results). In particular, the problem of evolution of
vortex patches, where the vorticity is a multiple of the characteristic function of a bounded
domain, has a unique global solution, and it was proved in [15] (see also [10]) that C'7,
y > 0, boundaries of the patches remain C"? for all times. In [27] it was shown that the L?
norm of the difference between the solutions of NSE and the corresponding solution of the
Euler system for such initial data converges to zero, as the kinematic viscosity v — 0; even
though none of the solutions is in L2. The (vt)!/? rate of convergence of [27] was improved
to (v)** in [1], due to the fact that the vorticity of the vortex patch with C'¥ boundary is
in fact in a Besov space 32 ~» see also [61] for a simpler proof and an extension to R>.

As we have mentioned above the Euler-o model [18, 25, 36-38, 60] is an inviscid regu-
larization of the Euler equations (1.2), which is given by the system

o °‘~V)v°‘—|—v;’-‘Vu‘}‘+Vp°‘:0,

v = (1 —aZA) u®,
(1.4)
V-u*=V-1*=0,

v (x, 0) = v""%(x).
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Here u® represents the “filtered" fluid velocity vector, p* is the “filtered" pressure, o > 0
is a regularization length scale parameter representing the width of the filter. Observe that
for @ = 0 one recovers, formally, the Euler equations (1.2). The vorticity of the 2D Euler-o
model g% = curl v* obeys the equations

9% L V)yq =0

u® - =0,

ot a

u* =K% xq*, (1.5)

q%(x,0) =¢""*(x).
The smoothed kernel is K* = G* x K, where G*(x) = a—lz ﬁKO(‘;—‘) is the Green function
associated with the Helmholtz operator (I — a?A) (see, e.g., [68]), the function Ky is a
modified Bessel function of the second kind of order zero (see, e.g., [79]).

The 2D Euler-« equations were studied in [65], where it has been shown that there exists
a unique global weak solution to the Euler-o equations with initial vorticity in the space
of Radon measures on R?, with a unique Lagrangian flow map describing the evolution of
particles. We remark, however, that the question of global existence of weak solutions for
the three-dimensional (3D) Euler-o equations is still an open problem. In [45] the global
existence of weak solutions is shown for the 3D axisymmetric Euler-o equations without
swirl, for initial vorticity being a finite Radon measure with compact support, also, the global
existence and uniqueness is established for the compactly supported vorticity in L?, p >
3/2, see also [11].

As in the 2D Euler case, the vortex patch is transported by the flow under evolution of
Euler-o equations. The following result is the essence of Theorem A.1 stated below. If the
initial vorticity is a multiple of the characteristic function of a simply connected bounded
domain Q, with a certain technical condition on the boundary being a simple curve, and
the boundary 9Q" is in either one of the following spaces: Lip, or clt o< B<1,or C%h,
0<B<l,orC B p>30< B < 1, then the boundary of the vortex patch remains in the
corresponding space for all time.

The outline of the paper is as follows. In Sect. 2 we study the convergence rate of the
solutions of the Euler-« equations to the solution of the Euler equations for strong solutions
that belong to the Sobolev space H" (R"), m > n/2 + 1, for n = 2, 3. We show that inter-
val of existence of Euler-o solutions contains the interval of existence of the corresponding
Euler solution, and that the convergence is uniform in time, for time intervals compactly
contained in [0, T*), where T* is the time of existence of the solution of the Euler equa-
tions. We also show that in the H”~2 norm the solution of the Euler-o equations differs
from the solution of the Euler equations by order «?. It is worth mentioning that this result
corresponds to the vt convergence rate of the solutions of the NSE to the one of the Euler
equations, for the inviscid limit of the classical solutions of the NSE equations in the whole
space see [24, 46, 47, 61, 62, 69]. The issue of inviscid limit of the NSE in domains with
physical boundaries, subject to the no-slip Dirichlet boundary conditions, is a very impor-
tant open problem, for both theoretical study and applications. The problem emerges first
from the boundary layer, which appears because we can not impose a Dirichlet boundary
condition for the Euler equation, then the nonlinear advection term of the Navier—Stokes
equations may propagate this instability inside the domain. Very few mathematical results
are available for this very unstable situation. One of the most striking results in this direction
is a theorem of Kato [48], see also [71, 78].

In Sect. 3 we study the convergence for the vortex patch problem. Specifically, we show
the convergence, as o — 0, of the L? norm of the difference between the solutions of the
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Euler-o equations and the solution of the Euler equations for the vortex patch initial data
with vorticity being a characteristic function of a simply connected bounded domain with
C'7, y > 0, boundary, even though neither of the solutions are in L2. The convergence
rate is of order («?)¥/4, which corresponds to the optimal convergence rate of the difference
between the solutions of the NSE and the Euler equations which is of order (vt)*/4 [1].

We remark that, ideally, we would like to compute the rate of convergence in dimen-
sionless units, however due to the absence of typical length scale in R”, the above rates of
convergence of the NSE to the Euler equations are given as powers of (vt), which has the
units of length square, see, e.g., [1, 27, 46, 61]. Similarly, in our case, the rate of conver-
gence involves the parameter o>, Observe, that one can artificially cook up a length scale
from the initial value , e.g., |v™"||;2]lg™ ||zz1 in the case of H" (R"), m > n/2 + 1, solutions,
or ||qi”||1L/12||qi” ||Zolc/ % in the 2D vortex patch case. Contrary to this, if one is interested in
bounded domains or domains with periodic boundary conditions, typical length scale will
be dictated by the size of the domain, and then the rated of convergence will be expressed
as dimensionless quantities.

In the following all the constants C are independent of «, and all the o dependencies are
spelled explicitly.

2 Classical Solutions

In this section we study the convergence rate of the solutions of the Euler-o equations to
the solution of the Euler equations for strong solutions that belong to the Sobolev space
H™(R"), m > n/2 + 1. For 2D incompressible flow with initial velocity v'" € H™(R?),
m > 3, the unique solutions of the Euler equations exist globally in time (see, e.g., [58]).
Similarly to the Euler case, the Euler-o equations has a unique global solution, since, as in
the 2D Euler case, we have an a priori uniform control over the L* norm of the vorticity,
which implies the global existence, as in the proof of the Beale-Kato-Majda criterion [7]. In
R? only local in time existence of strong solutions of the Euler equations has been shown,
see [46, 47, 54, 55, 58]. The existence and well-posedness of the Euler-a equations for
a short time can be easily shown following the classical theory of the Euler equations; see
also [41, 57] for an analogue of the Beale-Kato-Majda criterion for the Euler-o model. More
precisely, one has the following result:

Proposition 2.1 Let v'* € H™(R"), m > n/2 + 1. There exists T* = T*(|v"" || gn), T* >
W, such that for any T < T* there exists a unique solution v € C([0, T]; H™(R")) N
AC([0, T]; H™'(R™)) of the Euler equations (1.2) with initial data v'". In two dimensions
the solution exists globally in time. Similar results hold for the Euler-a equations (1.4) with
the maximal interval of existence of the three-dimensional Euler-a equations being also
dependent on «.

In the next theorem we show that the solutions of the Euler-or equations for the H"™,
m > n/2+ 1, initial data, exist at least as long as the solution of the Euler system exists, and
converge, as « — 0, to the solution of Euler equations. Our proof of this result follows the
ideas in [61].

Theorem 2.2 Let v",v'"™* ¢ H"(R"), m > n/2 + 1, and |v'" — v""*||gn — 0, as
o — 0. Let T* be the time of existence of the solution of the Euler system (1.2) v €
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Cioe ([0, T*); H™(R™) N AC1,c([0, T*); H"~'(R™)) with initial data v'". Then, for all 0 <
T < T* there exists 0 < @ = a(v’", v"™*, T) such that for all a < & there is a unique solu-
tion v* € C([0, T]; H"(R™) N AC([0, T]; H™ Y(R")) of the Euler-a equations (1.4) with
initial data v'"™°. Moreover,

v — vl oo, 77, 5my = O,
asa— 0,and forall0 <t <T
1@ =) Ol g2 < ([0 = 0" s + Ca’t) €, 2.1)

1 =) Ol gt < (o = o™

n1 + Cart) e, (2.2)
where C = C(||v™"||gm, T) is independent of .

We use the standard H™ (R") norm defined by
2 nm| 2 2
1 1B gy =/ (1+167)" | @©| as,
RVI

where f denotes the Fourier transform of f.
To prove the theorem we need the following estimates (see, e.g., [46, 59]).

Lemma 2.3 Letn =2,3. Let u,v € H"(R"), divu = 0, then there exist a constant C > 0,
depending on m, such that

(G- V)v, 0) | < C IVl gt N0l < C g |01 s > 5 +1, 23
(@ - V)0, 0) g | < ClIVull g2 10l < C lullgs 0l s m <5+ 1.

Let u € H"(R"), v e H™ ' (R"), and let V(u, v) be either one of the following bilinear
forms: W(u,v) =u x (Vxv),V(u,v)=(u-V)vor¥(u,v)= v, Vu,, then there exists a
constant C > 0, depending on m, such that

W (u, V)|l gm < C llullgm IVl gmer, m >3,
8 S o 2.4)
W (u, V)llgm < Cllullgm lvllgs, m=<73,
and form > 3 + 1
W (e, V) g < C (el g [0l g + el oo [Vl gmer) - (2.5
We also use the following lemma
Lemma 2.4 Let g€ L>(R") and f = (1 —a?A)~'g. Then
12 1
o[ =) fl =5 lgle (2.6)

Proof By taking a Fourier transform we have

)

)
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hence
21812
2 12 £)12 A 2 a” ||
it f||L2<R”>:/Rn O e
1
< 11812 SUP —2— < = g P2y -
= ”g”LZ(]Rn) yl;g (1 +y)2 — 4 ”g”LZ(Rn) D

Next, we prove Theorem 2.2.

Proof First, let us assume that v, v* € C([0, T1; H"(R")) N AC([0, T]; H™" ' (R")) are the
solutions of the Euler and the Euler-« systems (1.2) and (1.4) with initial data v and v/,
respectively, on some mutual time interval [0, T'], with

in’

v 2.7

||v”L°°([O,T],H”’) > “va”L“([O,T],H”’) <C (T, ,.,m) >

and let us show the convergence rates in H~2 and H"~'. In the second part we show that
the solutions of the Euler-o equations exist at least up to the time of existence of the solution
of Euler equations and satisfy (2.7).

The difference w* = v — v satisfies the following equation

o
at
— (@ Au® - Vv —v;V (&*Auf) — v;Vv; + V (p — p*) =0, (2.8)

+ W* - Vv +v,;Vui + @ - V)uw* + wj‘Vuj‘

w®(x,0) = v" (x,0) — v (x, 0).
Let k be either m — 1 or m — 2. Taking the H* inner product of (2.8) with w® (), we obtain

1d

5 lw 5 < I + I+ Iy + L,

where
I =[(w* x (V xv), w)yl,

L= (w® Vyw", w) g,

’

I = ’(w‘?‘Vu”-, w“)
J J Hk

L=’ [(Au® x (V x v), w*) e,
due to the identity
b-Vya+a;jVbj=—bx (Vxa)+V(a-b). (2.9)

Now, by (2.4)
I < C vl g w* 15
by (2.3)

2 2
L < Cllu®lgm lw* e < C I Mg Tw® g
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by (2.4)
I3 < C [l g 1w e < C 0 g w0
and by (2.4)
Iy < o [ Au®|l e 0l g [0 | e
Summing up we get the energy estimate

1d 2 2 2
2ar lw e < C llw* g (ol 4 10l gm) + o™ FAE | ([0l [ [ e -

Now, for k = m — 2 we have that
lAu |l gm—2 < C lu® |l gm < C 0%l ggm

and hence

1d 2 2 2
2 lw*lgm—2 < Cllw gm— (10l g 4 [0 ) + Ca” [0 gm0 N g [0 [ n—2

while for k =m — 1 we have by (2.6)

o ||Aua ”Hm—l < C ||(_A)l/2 Uot|

Hgm—1 = c ”va ”H’” i

and hence

1d ) )
5 27 1 gy = C W g (0l + 105 ) - Co 0™ g (10l g 1w =

Therefore, by Gronwall lemma and (2.7) we obtain that
lw® ¢, Ol gm-2 < (Iw® ¢, 0)[| g2 + Ca’t) €',

and
lw® G, Ol -1 < ([w® ¢, 0)[l -1 + Cart) e,

where C = C(||v™ || gm, T).

Next, we show that the solution of the Euler-a equations (1.4) exists as long as we
can solve the Euler system (1.2), and that v* converges to v in L*°([0,T], H™), as
a — 0. The proof follows the ideas in [61]. We regularize the initial data by taking
01 = F1 (12175 (6) F (™) and v"5@ = F~1(x1611/5(6) F (v")), for some 8 € (0, 8ol
Let a* be such that v £ 0 (if v'* = 0 for all &, then the proof is trivial). Since ||v'™"* —
V|| gm — 0, as o — 0, then there exists o such that |0/ || gm < [V || gm + 07" || gm
for all @ < «y. The regularized initial velocities of the Euler and of the Euler-o equations
satisfy, for all & < «y,

in,o,é
o™ g

in,8
v ||1-1m =K

in,a,d in,$
(i FVRY [T P

and for s € [0, m]

in,a

||v _ vinA,a,zS ||Hs , }Uin _ vinA,B ||Hx < K(Sm7s,
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where K = K ([v"™ || g, [v™*" || ym). In the following we fix s such that 2 <s <m — 1.

Let v, v°, v¥, v*? be the corresponding solutions of Euler and Euler-a equations with
initial data vi" and v"™?, respectively. Notice that as explained below, the solutions v, v°,
v® and v®? exist on some time interval [0, To] < Ty < T*, which is independent of « and
8, and also, for all ¢ € [0, To]

C(Ty, K
@Oy =CT0. K, 0" O s < oK) (2.10)

llo Ol gm » 3

where ¢ denotes v or v¥, and ¢° denotes either v® or v*?. Indeed, in R?, writing Euler
and Euler-« equations in the vorticity formulation we have that ¢ = curl v and ¢* = curl v*
satisfy

dq
3—+(U~V)q=(q~V)v
t
and
ag*

_ 1 l)t.v 0(: O(.VO(
at+(u Vg =(q Yu®,

respectively. Making the H* estimates (one can use (2.3) and the fact that for k > 3/2,
H*(R?) is a Banach algebra), duetom — 1 > %, we obtain

||w||Hm ey [y
—Hw it = €1 L

7 19 = €12 s 192

where ¥ denotes g or g%, and v® denotes ¢° or g*°, and hence the solutions exist on a
certain interval [0, Ty] depending only on K and §, independent of « and §. Furthermore,
we have!

C(Ty, K)

1Y Ollgn-1 <C(To. K), ¥ @] yu < 3

Hence, from the Biot-Savart law, ¢ = ﬁ fR3 l(;‘:)vlg x curl p(y)dy, we obtain (2.10). In R?
the solutions of Euler and Euler-o equations exist for all times, see Proposition 2.1.

¢ follows that
¥ Ol gm—1 =V (@©), (2.11)

where W is the solution of the scalar value initial-value problem % v(i)=C \Ilz(t), where W (0) is the H m—1
norm of either one of qi”, qi”*“, qi”*‘s, qi”*o"‘s, v(0)<K.

Now V(1) = #911)(0) exists on a certain interval of time [0, Tp], Tp > #(0) > CLK’ obviously inde-
pendent of @ and 8, and we have SUpPg</ <7, U(r) < ﬁ. Now, if a solution v (¢) existing on [0, Tava],
such that T%% < Ty, then the system can be solved with initial value %% (7%%) € H"~! to continue the

solution to [0, T% s 4 T"t 8] in which (2.11) is true. Iterating this argument we can continue the solution to
cover the whole 1nterval [0, T'] with the estlmate (2.11) throughout. (If the solution cannot be continued at
some time 7 < Ty, then lim sup, _ j— ||1// (t)llH,,, | = 00, a contradiction to (2.11).)
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314 J.S. Linshiz, E.S. Titi

Now, one can show, following [61], that v’ is a Cauchy sequence in the Banach space
C([0, Tp], H™), due to

5

v =

=(

The limit v of v%, as § — 0, is the solution of Euler equations, and from (2.12), we have

c([o.1p].6m)

pimd il (max {8, 8’})”’7%1 C (T,

] ga)) O ) 12y

‘H’”

i ”Hm) am—x—l) CeC TV | ym)
(2.13)
Next we show that v®? is a Cauchy sequence in C([0, Ty], H"), and converges to the
solution of Euler-o equations v*, as § — 0, and we have

vin,é‘!

HVﬂ + C (T05

[v ="l go g my = (0™

|| va _ UO(,5 || LOO([O,TU]‘H’”) < (|| Uin,D( _ vl‘n,o(,(s || n + C (TO; K) amfxfl) CeC(TQ,K). (2. 14)

Specifically, in R3 (R? case can be done similarly), we first assume that § > §’, and denote
wedd = q“"‘sl — q“*‘s, w38 = 8 _ @8 We have that

8@“'5'5/ ’ 7 — ’
- n (ua,zS ~V) R (((l _ (x2A) 1 wa,a,a) ) V) g%

_ (wa,s,s’ ) V) w4 (qa,B ) V) ((1 _ Ole)il wa,a,s/) .

Using (2.3) and (2.5) we obtain

d 5o l?
£z
£l s

el e

ayocs) [

~

Hm—1

w

@.8,8' H

H™ Hm—1 :

Now, the difference w®%% = v®?" — v satisfies the equation (see (2.9))

awa,é.y

ot

+ ((1 — azA)_l w““s) X (V X v““s/) +ud x (V X w“*5’5’)+v (f)""‘gl — ﬁ‘”) =0,

where p%, p*° are the modified pressure. By (2.3) and (2.4) we obtain that

) H W
Hm

Recall, that % < s, hence, by Sobolev embedding theorem and Gronwall lemma we have

1d Y 2
2dt

/
H wss v

2
< (o] +

HJ'

H WS

< H WS
L([0.7p];L>)

Le([0.T]; H*)

dt
HIVK

v (0)

< Hwa,a,ﬁ/ (0) H ecf(;||v”’5(r)||Hm+
HS

< C(Ty, K) 8" 100,

@ Springer



On the Convergence Rate of the Euler-«, an Inviscid Second-Grade 315

Using also that ||g®? || ym < @ we obtain
d !
a Hwa,a,s
dt Hm=1
< C( qa,s" i ||q(x,8 ” ,H) Hw_aﬁ‘s’ H +C (Ty, K) 8" CT0K)
Hm-1 H Hm-1

hence

ina, _ _inad

q

[ oy = (o HOTTIC T K ).

Hm—1
Making the same estimates for the case 8’ > §, we obtain that

in,a,8 _ ina8

q

+ (max {8, (S/})'"_s_1 C (T, K)) €K

9 ’Hm—l

a8
| ”Loo([o,ro];Hm—l) = (‘
which implies that zr®? is a Cauchy sequence in the Banach space C ([0, Tp], H™), and its
limit v*, which is the solution of Euler-o equations satisfies (2.14).

It remains to show that ||v®(¢) — v*®(¢)|| y» converge to zero, as & and § converge to zero
uniformly in [0, Tp], and then the convergence of v to v in L*°([0, Ty], H™) follows.

From (2.8) and Lemma 2.3 we have that the difference w? = v® — v*? satisfy
d o o
i K PR L P Uil Pl T Pl L PN PR sl (e
+Ca? [ Aut?| [0 o+ Co [ AU o 00 -

By Sobolev embedding theorem, (2.2) and Gronwall lemma we have that

” w’ ” Lo ([0.7p].L® (RM))

< Jw? HLOC([O,TO],H"H) < (o™ =" et + C (To, K) ) €705

S (”vin - Uill’a ||]-1m—1 + C (T07 K)a) eC(TO,K)a

by (2.6)
o AU gn < C "l g
o || Au?| 0 <o | Au] < C Il gm -
Hence
d ||vin _ vin,a| " Py a
L P R e R

where C = C(K, Tp). By using Gronwall lemma, first letting o« — 0, and then letting § — 0,

|pin —yine ”H’”*]

while choosing § such that - — 0, we obtain that [[v® — v*®|| o0, 7,1, 5m) — O.
Using also (2.13) and (2.14) the convergence of v* to v in L*°([0, Ty], H™) follows.

Now, let the Euler solution exist on [0, 7*), then we can continue the solution of the
Euler-o equations up to any 7 < 7™ in a finite number of iterations using the above ar-
gument. Indeed, we continue the solution from a time interval [0, Ty + ... + T;—;] to
a time interval [0, Ty + ... + T;], by solving the Euler-o equation with the initial data
v(To+ ...+ Ti—1), « <min{«y, ..., a1}, which converges to v(Ty + ... + T;_y) for a
time Ti = C([v(Tie)) lgm + 0™ | gm) ™1 = C (vl oo qo. 1, m) + 107 [ gm) 72 O
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3 The Vortex Patch Case

In this section we study the convergence, as & — 0, of the L2 norm of the difference between
the solutions of the 2D Euler-« equations (1.4) and the solution of the 2D Euler equations
(1.2) for the vortex patch initial data with vorticity being a characteristic function of a simply
connected bounded domain with C7, y € (0, 1), boundary. We show that the convergence
rate is of order («?)3/4, which corresponds to the optimal convergence rate of the difference
between the solutions of the 2D NSE and the 2D Euler equation which is of order (vt)3/4.

Yudovich [80] obtained the existence and uniqueness of weak solutions of Euler equa-
tions for initial vorticity in L®(R?) N L'(R?), in particular, for the problem of evolution
of vortex patches, where the initial vorticity ¢’ is assumed to be proportional to the char-
acteristic function of a bounded domain Q", ¢'" = gy xqin. Due to the conservation of the
vorticity along particle trajectories, the vorticity ¢ (#) remains a characteristic function of an
evolving in time domain 2 (¢). For the case where the boundary of the patch Q" belongs to
C"7,y > 0, it was proved in [15] (see also [10]) that the Euler system has a unique solution
ve Ly (R, Lip(R?)), and () remains a bounded C!? domain. It was proved in [27] that
the L? norm of the difference between the solutions of NSE and the corresponding solution
of the Euler system for such initial data converges to zero, as the kinematic viscosity v — 0
(even though none of the solutions are in L?). The rate of convergence was improved to
(v1)3* in [1], due to the fact that the vorticity of the vortex patch with C'” boundary is in
fact in a Besov space le/ozo, see also [61] for a simpler proof and an extension to R3.

It has been shown in [65] that there exists a unique global weak solution to the Euler-o
equations for initial vorticity in M(IR?), the space of finite Radon measures on R?, with
a unique Lagrangian flow map describing the evolution of particles. In [5] we show the
convergence, as @ — 0, of the weak solutions of Euler-« equations with a distinguished sign
initial vorticity in M(R?) N Hl;j (R?) (vortex sheet data) to those of the 2D Euler equations.

Since the solution g* of the Euler-o equation is transported by the smoothed vector field
u®, then in the Euler-o case the vortex patch is also transported by the flow. The global
existence and uniqueness results for the smooth vortex patch evolution under the Euler-«
equation can be obtained using arguments similar to those presented in [5] and [58, Chap. 8].
Specifically, if ¢/ (x) = goxqi»(x) is a multiple of the characteristic function of a simply
connected bounded domain Q/*, and the boundary 9™ is in either one of the following
spaces: Lip, or C'"#,0< g8 <1,or C*#,0<B <1,0or C*, n>3,0 < B < 1, then the
boundary of the vortex patch remains in the same space as 9™ for all times. We describe
this result in details in Appendix, Sect. A.1.

In studying the convergence rate we use the following results.

Proposition 3.1 Let ¢ € L®(R*) N L'(R?). Then there exist unique global solutions q
and q* of Euler and Euler-a equations (1.3) and (1.5) respectively. Moreover, the L?
norms of q (of (1.3)) and q® (of (1.5)) are conserved, namely, ||q(-, t)|lLr = lg* (¢, )]lLr =
g™ |lr, 1 < p < oo. In addition, the velocities are bounded uniformly

)1/2

o G Ollgeo s 10 G Do < (@™ [0 6™ ] 3.1)

The bounds on the velocities v (of (1.3)) and v® (of (1.5)) are a direct consequence of the
Biot-Savart law and the conservation of the L' and L norms of vorticity.

Proposition 3.2 Let g™ (x) = qoxqin (x) be a multiple of the characteristic function of a
simply connected bounded domain Q" with C'7, y € (0, 1), boundary. Then the global
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solutions v and v* of Euler and Euler-a equations (1.3) and (1.5), respectively, are in
Ly (R; Lip(R?)) and for all . > 0,t € R

VU (D)l < [ VU] e, (3.2)

IV ¢, )|l oo < ”vvin HLOO eCIt\,

where C = C(q™), independent of o, and the boundary of the vortex patch remains C'7 for
all time.

For the Euler equations this result has been shown in [10]. We adopt their proof to
show the uniform, in «, bound on ||[Vv*(:, )| .~. The vortex-patch problem is reformu-
lated in terms of a scalar function ¢“(x, t) that defines the patch boundary by Q%(¢) = {x €
R?|¢%(x, t) > 0} and is convected with the flow by

ap”
ot

+ U V)¢t =0,
0% (x,0) = 9" (x).

To apply the method of the proof used in [10], the only ingredient we need is to show that
Vu® is uniformly, in «, continuous in the tangential direction of the boundary. First, we
recall some properties of the kernel K¢
L xt
K* (x) =V-W¥ (Ix]) = mD‘I’“(IxI), (3.3)

where
1 r
v () = 5 [Ko () +1ogr],
2 o

. dwe 1T 1, ry 1
DV (r) =~ (r)zg[——Kl (—)+—],

DU (1x]) 1 1 P [x| n 1 ¥ [x] 1
x))=—|—— — — — | -—,
27 lalx] '\ a 2 ' \a |x|?
ngja() 1 2K(r> 1 K(r) IK(F)—I—Z
- V)= — | ——— —_ ) — — —_) — — — — 1.
2 ar? "\ g azr ' \g o3 \g r3
The functions Ky and K, denote the modified Bessel functions of the second kind of orders

zero and one, respectively. For details on Bessel functions, see, e.g., [79]. Derivatives of W*
decay to zero as - — o00; and as = — 0 satisfy

3.4

N 1 r r r
DY (r):—gﬁlog;—l—O(—),

o2
S 11 1
DV*(ry=———=log—+0|—= ), 3.9
4 o a a?
1 r
3.\, - o -
DWW () = — - 2+0( ~log )
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where the constants in the big O are independent of «. The filtered velocity gradient is given
by

Vu® (x, 1) =/Rz VK* (x —y)q” (y,t)dy

As in [10], denote by W a divergence free vector field which is tangent to 92, W = V4¢.
Then

Vu® (x) W (x) = /Rz VK (x —y)g* () [W (x) — W ()] dy,

and we have the following result corresponding to Corollary 1 and Lemma in the appendix
of [10].

Lemma 3.3 Fory € (0, 1)
Vi Wllcor < CIVV* Il [Wllcoy -
Proof We stress that all the constants C are independent of «. We write
Vu® (x) W (x) —Vu*(x+h)W (x +h)

= /]RZ VK® (x —y)q* () [W (x) = W (»)]dy
—/RZVK"‘(x+h—y)q“(y)[W(X+h)— W (y)]dy

_ /| oy VKOG D@ 0 [W 0 = W ()] dy
- /‘H‘dlh‘ VK* (x+h—y)q® () [W (x+h) — W (»)]dy
+ / o VK@D 0 @) = Wy

+/ [VK*(x —y) = VK“ (x +h— )] q* ) [W (x +h) — W (y)]dy
[x—yl=2|h|

=L+ 5L+5L+ 14
Using the fact that |[VK*(x)| < ﬁ (cf. (3.3), (3.4)), we obtain that |Ii|, ||
< Cllg*llL=|W||cor kY, also due to |D?K“(x)| < ﬁ (cf. (3.3), (3.4)), we have |I4] <
CW) gl | W] oy kY. To bound the term I3 we consider two cases |h| <« and |h| > «
separately. We have

3] < [Wllcor B 1T1,

where J = flx—vlzzwhl VK*(x — y)q®(y)dy. First, let |h| < «, write J as
s= [ VK c-permay- [ VK =g mdy
R2 lx—y|<2|h|
=Vu®(x)—Ji.
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By (3.3)-(3.5), we obtain

IJllsllq“IILoo/ IVK® (x — y)|dy
lx—y|<2lh|

N 11 [x — y| C
<11g%llL /@d (E; log +E dy

o
=Cllg"ll -

Now, let |h| > o, then we write

J=/ (VK"(x—y)—VK(x—y))q“(y)dy+/ VK (x —y)q* (y)dy
l—y[=2]A] l—y[=2]A]

=J2+J3.

A bound for | /3| is obtained by using a lemma due to Cotlar (see [72, p. 291])

I3l=C (HP-V-/‘.§2 VK (x —y)q* (y)dy

+ llg* IILoo>

L>®

=C (V"I + g™l ) -

We bound |J;| using the facts that Ky,K; > 0 satisty fRZ ;—ZKO(‘(’;—‘)dx = 2m,
fl | Kl(%)dx=7rK0(2),andwe0btain

x|>2a olx|

o 1 |X—)’| 1 |X—y|
|2l <Clg ||Loo/ |: K1( +—2K0 dy
|x—y|>2a o |)C - y| o o o

<Cllg“ll oo -

To conclude, in both cases we have
3] < C[Wllcoy B (VU [l + lg¥ 1l o) -

O

Next we briefly recall the definition of homogeneous Besov spaces. Let S(R") be the
Schwartz space and denote by Z’(R") the dual space of Z(R") = {f € S(R") : D? f ©0) =
0 for every multi-index 8 € N"}, it can also be identified as the quotient space of S’/P,
where P is the collection of all polynomials. Here ¢ and F(¢) denote the Fourier transform
of ¢ in R".

We recall the Littlewood-Paley decomposition. Choose a radial function ¢ € S such that
¢ € CP(R™\{0}) satisfies supp ¢ C {% <|E| < %} and Z;‘;w @q(&) =1 for & #0, where
0q(8) = 9(2798), that is, ¢, (x) =29"¢(29x). For g € Z one defines the dyadic blocks
by A, f =F ' (Flpy) F(f)) = ¢q * f. The formal decomposition f =22 A, f holds
true modulo polynomials and is called the homogeneous Littlewood-Paley decomposition.
For s e R, 1 <r < oo, the homogeneous Besov space is defined as

B, =|rez ®) 11l <oof.
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where ||f||By (Z;o_ﬂ)o 25 Ay I DY for r € [1, 00) and ||f||By = sup, 7 (2" x
1A fllz2). For the detailed description of Besov space see, e.g., [8, 52, 66 73].
We use the following results:

Lemma 3.4 [61] ForO<pB <1
1l =< CIFN IV A" (3.6)
Lemma 3.5 Lets € R, 8 > 0. There exist constants ¢ and C such that

S RS [C LN

< CP I fllypo (3.7)

2,00

Proof This lemma follows directly from definition of the Besov spaces since

o(2) g1 f

B
[ ()] =7 ) # (ot )], =
and because ¢(277¢) is supported in {€ € R" : %2" <&l < %2"}. |
Lemma3.6 Let0<f<2,g€ B} and f=(1—a>A)"'g. Then
Ll (GNP TP (3.8)

Proof We have

o |8, (82 )] =a’ | (@) F () )
£1° 8
‘}—(‘Pq) :

14 a? €] ]2

Y 12
= ( [ % v (2—qs)§<s>)2ds)

1 +a25P)

1/2
< ((sup—2 / (¢ (279€) 8 (&) de
“\\zo A +0? ) Jen

= ”Aqg”LZ'

L2

:aﬁ

From which (3.8) follows. a

The two following propositions show that the vortex patch Vortlclty, Wlth C'7 boundary,
evolving under Euler-o equations is in a homogeneous Besov space B

Proposition 3.7 [61] If Q is a bounded domain with C'' |y > 0 boundary, then xq € le/ozo
Proposition 3.8 Let v e L*([0, T1; Lip(R?)) with divv = 0. Let ¢ solve

dp
— V =0,
at+(v )X
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@(x,0) =" (x),

1/2

with ¢'" € B . Then

. t
lo G0l g < [l |y eCIoIVHEDmedr,
BZ.oo BZ,oc

This result is a straightforward adaptation of the Proposition 3.1 of [1] to the homoge-
neous Besov spaces.
Propositions 3.2, 3.7 and 3.8 imply the following result:

Corollary 3.9 Let ¢ (x) = qo xqin (x) be a multiple of the characteristic function of a sim-
ply connected bounded domain Q" with C'7, y > 0, boundary. Then the global solutions
q and q* of Euler and Euler-a equations (1.3) and (1.5), respectively, satisfy for all « > 0,
reR*

. 1
g Dl < g™y eCRITECOIdr,
2,00 2,00
lg® C.Ollzn < ”qi" H 2172 €l llvur el poodt
BZ.oo - BZ,:x:
Next we state a lemma that play an important role in estimating the convergence rate.
Lemma 3.10 Let ¢'" = qoxqin, with Q" being a simply connected bounded domain Q"

with C' boundary, y € (0,1). Then for all T € [0, 00) the solution u® of the Euler-o
equations (1.4) satisfies

1/2
@18 0l = €N 0,1, 412) (3.9)
forallt €[0,T].
Proof Let0 < B < % Since (B;f)/ = 2 oo for B € R (see, e.g., [73]), we have
a2 Au 17, =aﬂ+1/2/ Au® (x) - Au® (x)dx < CaP+1/2 ||Au°‘||35 ||Au°‘||B;f )
Rll Nee) >

We stress that all the constants C are independent of « and 8. Now, by (3.8) and (3.7)

oA g < =A< 8 e < Cllglge

s
and by (3.6)
o anB apl=8
| Au ”Bg‘f =CIIVu®l, 1Au®ll,,
in||B T
EC”‘] ”Lz | Au ||L2ﬂ'

Summing up we have

12 2 inllB -
VA = Cllg” g g™ |5 1aur "
,00
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hence
BE1j2 1/(+ in || B/(1+8)
o« 7 [ Autllz < Cllg s a2
2,00
and taking the limit as 8 — 0 we obtain
1
a lau2 = Clig*llge - O

In the next theorem we show that the solution of the Euler-o equations differs from the
solution of the Euler equations by order («?)*/4, both having the same vortex patch as initial
data.

Theorem 3.11 Let ¢ = qoxqin, Where xqin is a characteristic function of a simply con-
nected bounded domain Q" with C'7, y € (0, 1), boundary, and let v, v* be the solutions
of the Euler and the Euler-a equations (1.2) and (1.4), respectively, with initial data q'".
Then the difference w* = v — v* is square-integrable and obeys the estimate

lw* ¢, )|l 2 < a2CV (1) ||q“’ ||BZ}/02o eV,

where

t

VO = [ (9060l + 190 (ol d
0
In particular, there exists a constant C = C(q'") such that
o 3/2 ., CeCt
lw* (.l 2 e’ Ce™* .

Proof The difference w® = v — v® satisfies the following equation
ow®
ot

— (@ Au® - Vv —v;V (@®Aus) —v;Vv; + V (p — p*) =0. (3.10)

+ (w* - V)v+ vij;‘ + W* - Vyw® + w7Vu‘}‘

We remark that v and v®, obtained from the vortex patch vorticity by convolution with
the Biot-Savart kernel are not in L2, however, the difference w® € L*®([0, T], L*(R?)),
since curlw® is compactly supported and [o, curl w®(x, 1) dx = [ (g™ — ¢™*)(x)dx =
0 (this could be seen by using an asymptotic expansion of the kernel, see, e.g., [58],
p. 321). Also, all the terms in (3.10) are in L*®([0, T1, L>*(R?)), since the velocities are
in L*®([0, T], L*(R?)), and their gradients, as well as gradients of the pressures, are in
L>([0, T1, L?>(R?)).
We take an L2-inner product of (3.10) with w*(x, ¢) and obtain that

1d
Ezllw" ('J)||iz§11+12+13, (3.11)

where

’

I = ‘(w‘?VuOf, w“)
J J

L =a” [((Au* - Vv, w)| + o [(w* - V)v, Au®)|,
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L=|(V(p—p*),wl,

here we used the identity, for & divergence free,

((fF-Vg+giVfih)=((f-V)g.h)—((h-V)g, f).
The first term is estimated by

I < w72 1V [l o -
For the second term by (3.9) we obtain
L <o | Au® g2 [ Vvll oo lw[l 2

3/2

<Ca?|¢" ||Lc,o([0 r.8Y2) VUl oo lw*ll 2 -

It remains to estimate the third term. We remark that the pressure is determined uniquely up
to a constant, and in order to ensure that p € L?, we require a side condition fRZ px)dx =0.
Notice that the mean free pressure of Euler equations satisfy

p=RiR; (v;v;)

where R; = (—A)~1/2 a is the Riesz transform (see, e.g., [35]), hence by the properties of
the Riesz transform and the Sobolev embedding theorem we have

Ipllze = v | 2 < H0ls < Clol3as < C g™ 25 -

For the Euler-« equation we have

d 0 1 9?2 2 d d
—Ap% = — (u%v*) + = — (u%) — AU —u®),
P ax; 0x; (u’ Uf) + 2 0x? (u]) 0x; <a i 0x; uj)
we write
p*=pi+p3,

where the mean free pressure pf, fR2 Py (x)dx =0, satisfies

9 9 1 92
u.

Ap‘_axa

and pj satisfies

ad a
~ApY =—a*— [ Aut—u*).
8x,~ / 8x,~ /

As described above for the pressure of the Euler equations, we have

2
L4/3

in

[Pt =Cla

For the p5 we have

d
lAaud—ul| <o Au] 2 VU .
8xl~

[Vps],. =«
L2
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Hence, using also (3.9), we obtain

3/2

b= VP8 o T2 = Co 10 . g1 190 i N2

2,00

From the above and (3.11), and by using Grénwall lemma, we obtain

lw ¢, )2 < Ca™? ”qm ||le/2 V(t)efV D,

where V(1) = [;(IVv(-, 7). + [ Vu®(-, ) || . )dT. Hence by (3.2)
lw? (-, )l 2 < Ca®? ||qin ”321/DZC ”vvin ”Loo o€t IV | oo e
<a?2CeC,
where C depends only on the initial data g/ |
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Appendix
A.1 Global Regularity of Contour Dynamics-o Equation

We consider the vortex patch problem, i.e., a system in which the initial vorticity g’ is
proportional to the characteristic function of a bounded domain Q, ¢™ = ggxqin, under
the evolution of the Euler-o equations (1.5). Due to the conservation of the two-dimensional
Euler-o vorticity along particle trajectories for such an initial data (in fact, it is enough for
the initial vorticity to be in the space of Radon measures in R?, see [65]), the vorticity g% (z)
remains a characteristic function of an evolving in time domain Q%(¢). In this section we
present the result which states that the boundary of a vortex patch evolving under Euler-o
equations (1.5) remains as smooth, for all time, as initially boundary, provided the latter is
smooth enough in a sense specified in Theorem A.1 below.

In two dimensions the evolution of the boundary x(o, ) of a vortex patch under the
Euler-a equation (1.5) is given by

g_x (o,1) = —qO/ we (’x (o,1) —x (0’, t)‘) 8_x (a’, t) do’,
t sl 3(7
(A.1)
x(0,0) = x" (o),
where

U (r) = % [KO (2) + logr] ,
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and K denote the modified Bessel functions of the second kind of order zero. As we men-
tioned before, for details on Bessel functions, see, e.g., [79]. The integro-differential equa-
tion (A.1) is an analogue of the so-called contour dynamics (CD) equation [58, 81], describ-
ing the evolution of the boundary of vortex patch evolving by means of the Euler equations
(1.3):

0x 9 , ax , ,
E(O’,t)——g Sllog(‘x(a,t)—x(a,t)’)a(a,t)da,
(A2)

x(0,0) = x" (0).

The CD-« equation (A.1) is derived following arguments similar to those used in the Euler
case, see [58, 81].

We show that CD-« equation (A.1) is well-posed in the space of Lipschitz functions and
in the Holder space C "B n > 1, which is the space of n-times differentiable functions with
Holder continuous n't derivative. Let us first describe the Holder space C"#(S' C R; R?),
B € (0, 1], which is the space of functions x : S' C R — R2, with a finite norm

n

bxllp =)

k=0

k

dakx

n

X
+ do"

’

co(sh) B

where

XNl cogsty = sup [x ()]
oes!

and | - | is the Holder semi-norm

[x(0) — x(a")]

x|g= su
lx1g L ——

o,a'eS]

o#o’

The Lipschitz space Lip(S') is the C*! space, that is, with the finite norm 1% llLipcsty =
lx]lco¢sty + |x[1. We also use the notation

|x(0) — x(ca")]

x|, = inf
lo —o’|

J,U'ESI

o#o’

We consider the CD-« equation (A.1) as an evolution functional equation on either one
of the following Banach spaces: Lip, C'#, g € [0,1], C>7, y €[0,1), or C*?, n > 3,
0 € (0, 1). We have the following result

Theorem A.1 Let V be either one of the following spaces: Lip(S'), or C1#(SY), B
[0, 1], or C*7(SY), y €0, 1), or C™?(SY), n >3, 6 € (0,1). Let x™ € V N {|x], > 0},
then there exists a unique solution x € C'((—00,00); V N {|x], > 0}) of (A.l) with
initial value x(c,0) = x" (o). In particular, if xo € C®(S") N {|x|, > 0} then x €
C'((—00,00); C®(SH) N {|x|. > 0}).

We remark that, although the kernel W* and its first derivative DW® are continuous
bounded functions, its higher derivatives D™W*, m > 2, are unbounded near the origin,
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and the chord arc condition |x|, > 0, which implies simple curves, allows us to show the
integrability of the relevant terms.

We only sketch the main steps of the proof, since it is in the spirit of [4, 5] and [58,
Chap. 8], which can be consulted for details of such a proof. In [5] we show the well-
posedness of vortex sheet problem for Euler-« equations, and it contains various estimates
involving the derivatives of the kernel W, and [58, Chap. 8] describes the proof of the
original vortex patch problem in the Euler equations case.

The following are the main steps involved in the proof of Theorem A.1. In the first step,
we apply the Contraction Mapping Principle to the CD-« equation (A.1) to prove the short
time existence and uniqueness of solutions in the appropriate space of functions. Next, we
derive an a priori bound for the controlling quantity for continuing the solution for all time.
At step three one can extend the result for higher derivatives, using the estimates derived in
[5] and [58, Chap. 8].

A.1.1 Local Existence of Contour Dynamics-a Equation

Next we show the local existence and uniqueness of solutions in the Lipschitz space, the
details and the estimates in other appropriate spaces can be done in the same spirit following
arguments presented in [5] and [58, Chap. 8]. First we recall some properties of the kernel
v« gsee also (3.4)—(3.5). For g —0

v (r)= % loga+ O (1), (A3)

and for large ~
WY (r)=0 (logr). (A4)
Also, DV is bounded for all r € [0, c0),

DY (r)= 0 <1> , (A.5)
o

where in the big O the constants are independent of «. To apply the Contraction Mapping
Principle to the CD-« equation (A.1) we first prove the following result:

Proposition A.2 Let 1 < M < 0o, and let KM be the set
K" = {x e Lip (S") : llxllup, < M, |x], > %} .
Then the mapping
x> u(x (@)= /Sl K (x () —x (")) dr’ (A.6)

defines a locally Lipschitz continuous map from K™, equipped with the topology induced by
the || - ||Lip norm, into Lip.

Proof We start by showing that u(x (o)) maps K* into Lip. Let x € K. By (A.3) and
(A.4) we have

dx

wixnl <ao [ ¥ (fx @) ~x (o)) | 5 ()| o
sl o
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< Cqo(loga + 1 +1logM)|x|;. (A7)
To show Lipschitz continuity of u(x(o)) we use that by mean value theorem and (A.5),
we have that for x(¢”) € B(x(0), |x(c) — x(0)]), the ball centered at x (o) with the radius
lx (o) —x(o)],
W (| @) —x (o)) — ¥ (jx @)~ x (5))] < D¥* (Jx (0”) ~x (o") ) x () —x @)
C _
< ;Ix (o) —x (), (A.8)
and hence

u (x (o)) —u(x ()]
a0 [ 19 (@) =x @) = 9 (1 @) —x ()|

C -
< —qolxli|x (o) —x(0)].
o

Now, we show that u(x) is locally Lipschitz continuous on K. It is enough to prove that
forx € KM, y e Lip(S')

1
| Dyu (x) y”Lip =C <;a M, ”x”Lip> ”y“Lip' (A9)

Letx € KM,y e H'(S"), we compute

Du(x(0))y (o)

d
= pu (0)+ey(o))
€ e=0

_ ) oy @@ —x @) (o) — @) dx
- qo/;quJ (|x () —x (¢”)]) Y (') do

a0 [ W (x @) —x (o)) () o’

sl
=F(x(0)y@)+ F((x(@)y(0).

Next we show (A.9). To estimate the C° norm we use (A.5) for F,

d
Fa@)y@l<a [ 0¥ (r@) =2 (@) ]y @ =5 (@)]| 5 ()] do
Cc
< —aollylcolxly
and (A.3) and (A.4) for F;
d
|2 (x (@) y (@)l Squsl W (|x (@) —x (")) ’ﬁ(a/) do’

<Cqo(loga+1+logM)|yl;.

@ Springer



328 J.S. Linshiz, E.S. Titi

Next we show Lipschitz continuity of D,u(x(c))y(c). For F, one uses (A.8). For F; we
have

|Fi (x(0)y (o) — F1 (x(6))y(0)]

d
5%/51 D (Jx (@) = x (o)) = DY (|x @) = x (") )] | (@) = ¥ ()] ‘_d(j (o) do’
a ~ / - |y(0')_)7((7/)| dx , , ,
—i—2610/5l DV (|x(0)—x(a)|)|x(a)—x(o)|m E(G) do

do’

d
+q0/ D\If"‘(|X(5)—x(a/)|)|y(0)—)’(5)|’d—x(ff/)
st o
=L+ DL+

For I, by the mean value theorem, (3.5) and due to the fact that |x|, > %, we have that for
o” € S' and such that x(¢”) € B(x(0), |x(c) — x(&)|)

[ DY (|x (0) —x (o) [) = DY (|x (@) — x (o)])|
<D ([x (o) = x (o)) ] 1x (0) — x (3)]

11
<|-——|lo
(47{0[2

1
EC(M)EIO—t?I(

M‘ﬁ) (@)~ x ()
o o

|G//—U/|
log{ —— )| +1).
o
log(L _0|>‘+1>d0/
o

Therefore,

_ 1
Iy <o —6|C(M)—=qollylco |x|1/ (
o sl

1 .
=C (M, ;J]o) Iylicolo —aol.

For I, and I; we use (A.5) and |x|, > ﬁ to obtain

1 _
12,I3§C<M,—,q0) lyllo —a]. 0
o

Proposition A.2 implies the local existence and uniqueness of solutions:
Proposition A.3 Let KM = {x € Lip(S") : lxllLp, < M, |x]s > %} and let xq € Lip(S") N
{|x] > 0}, then for any M, 1 < M < oo, such that xo € KM, there exists a time T (M), such
that the system (A.1) has a unique local solution x € C'((=T (M), T(M)); KM).
A.1.2 Global Existence of Contour Dynamics-a Equation
To show the global existence of the CD-« equation, we assume by contradiction, that

Tmax < 00, where [0, Tmax) is the maximal interval of existence, and hence the solution
leaves in a finite time the open set K™, for all M > 1, that is, lim sup,_,7— x|y = oo or
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limsup, m = 00. Therefore, if we show global bounds on |x(~,lt)|* and ||x(, )|y in

[0, Tiax ), We obtain a contradiction to the blow-up, and thus the obtained local solutions can

be continued for all time. The result extends to negative times as well.

To control the quantities m and ||x(-,t)|lyv one needs to bound fOT‘““" IVeu®(x(-, 1),

t)|| Lodt. Next proposition shows the bound on || Vu®|| .~ for the vortex patch initial data.

Proposition A.4 Let g™ € L'(R?) N L®(R?) then
o 1 in in
IVee 0.0l <€ (=) (la™ [ + g™ [1) -
Proof We write
Vou® (x,1) = /2 VK* (x = y)q* (y,0)dy
R
:/ -I—/ =L+ L.
[x—yl<a [x=y|>a
Using (3.5) we obtain

I, <Clg® (.,;)||Loo/ |D*W* (r)| rdr
0

in ¢ Ll L £
<C|q HLOQ/O sl s+ = lar
=Clq"|,~
and
I < sup IVK“(x—y)I/ q* (y,t)dy
|x—y|>«a R2
< C 1 in
<C la"],. .
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